NCERT Solutions for Class 11 Maths Chapter 5- Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 5

Exercise 5.1 Page No: 103

Express each of the complex number given in the Exercises 1 to 10 in the form a + ib.

1. (5i) (-3/5i)

Solution:

(5i) (-3/5i) = 5 x (-3/5) x i2

= -3 x -1 [i2 = -1]

= 3

Hence,

(5i) (-3/5i) = 3 + i0

2. i9 + i19

Solution:

i9 + i19 = (i2)4. i + (i2)9. i

= (-1)4 . i + (-1)9 .i

= 1 x i + -1 x i

= i – i

= 0

Hence,

i9 + i19 = 0 + i0

3. i-39

Solution:

i-39 = 1/ i39 = 1/ i4 x 9 + 3 = 1/ (19 x i3) = 1/ i3 = 1/ (-i) [i4 = 1, i3 = -I and i2 = -1]

Now, multiplying the numerator and denominator by i we get

i-39 = 1 x i / (-i x i)

= i/ 1 = i

Hence,

i-39 = 0 + i

4. 3(7 + i7) + i(7 + i7)

Solution:

3(7 + i7) + i(7 + i7) = 21 + i21 + i7 + i7

= 21 + i28 – 7 [i2 = -1]

= 14 + i28

Hence,

3(7 + i7) + i(7 + i7) = 14 + i28

5. (1 – i) – (–1 + i6)

Solution:

(1 – i) – (–1 + i6) = 1 – i + 1 – i6

= 2 – i7

Hence,

(1 – i) – (–1 + i6) = 2 – i7

6.

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 1

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 2

7. NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 3

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 4

8. (1 – i)4

Solution:

(1 – i)= [(1 – i)2]2

= [1 + i2 – 2i]2

= [1 – 1 – 2i]2 [i= -1]

= (-2i)2

= 4(-1)

= -4

Hence, (1 – i)4 = -4 + 0i

9. (1/3 + 3i)3

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 5

Hence, (1/3 + 3i)3 = -242/27 – 26i

10. (-2 – 1/3i)3

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 6

Hence,

(-2 – 1/3i)3 = -22/3 – 107/27i

Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.

11. 4 – 3i

Solution:

Let’s consider z = 4 – 3i

Then,

= 4 + 3and

|z|2 = 42 + (-3)2 = 16 + 9 = 25

Thus, the multiplicative inverse of 4 – 3i is given by z-1

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 8

12. √5 + 3i

Solution:

Let’s consider z = √5 + 3i

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 9

|z|2 = (√5)2 + 32 = 5 + 9 = 14

Thus, the multiplicative inverse of √5 + 3i is given by z-1

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 10

13. – i

Solution:

Let’s consider z = –i

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 11

Thus, the multiplicative inverse of –i is given by z-1

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 12

14. Express the following expression in the form of a + ib:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 13

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.1 - 14


Exercise 5.2 Page No: 108

Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.

1. z = – 1 – i √3

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 1

2. z = -√3 + i

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 2

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:

3. 1 – i

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 3

4. – 1 + i

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 5

5. – 1 – i

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 6

6. – 3

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 8

7. 3 + i

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 9

8. i

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.2 - 11


Exercise 5.3 Page No: 109

Solve each of the following equations:

1. x2 + 3 = 0

Solution:

Given quadratic equation,

x2 + 3 = 0

On comparing it with ax2 + bx + c = 0, we have

a = 1, b = 0, and c = 3

So, the discriminant of the given equation will be

D = b2 – 4ac = 02 – 4 × 1 × 3 = –12

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 1

2. 2x2 + x + 1 = 0

Solution:

Given quadratic equation,

2x2 + x + 1 = 0

On comparing it with ax2 + bx + c = 0, we have

a = 2, b = 1, and c = 1

So, the discriminant of the given equation will be

D = b2 – 4ac = 12 – 4 × 2 × 1 = 1 – 8 = –7

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 2

3. x2 + 3x + 9 = 0

Solution:

Given quadratic equation,

x2 + 3x + 9 = 0

On comparing it with ax2 + bx + c = 0, we have

a = 1, b = 3, and c = 9

So, the discriminant of the given equation will be

D = b2 – 4ac = 32 – 4 × 1 × 9 = 9 – 36 = –27

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 3

4. –x2 + x – 2 = 0

Solution:

Given quadratic equation,

x2 + – 2 = 0

On comparing it with ax2 + bx + c = 0, we have

a = –1, b = 1, and c = –2

So, the discriminant of the given equation will be

D = b2 – 4ac = 12 – 4 × (–1) × (–2) = 1 – 8 = –7

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 4

5. x2 + 3x + 5 = 0

Solution:

Given quadratic equation,

x2 + 3x + 5 = 0

On comparing it with ax2 + bx + c = 0, we have

a = 1, b = 3, and c = 5

So, the discriminant of the given equation will be

D = b2 – 4ac = 32 – 4 × 1 × 5 =9 – 20 = –11

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 5

6. x2 – x + 2 = 0

Solution:

Given quadratic equation,

x2 – x + 2 = 0

On comparing it with ax2 + bx + c = 0, we have

a = 1, b = –1, and c = 2

So, the discriminant of the given equation is

D = b2 – 4ac = (–1)2 – 4 × 1 × 2 = 1 – 8 = –7

Hence, the required solutions are

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 6

7. √2x2 + x + √2 = 0

Solution:

Given quadratic equation,

√2x2 + x + √2 = 0

On comparing it with ax2 + bx + c = 0, we have

a = √2, b = 1, and c = √2

So, the discriminant of the given equation is

D = b2 – 4ac = (1)2 – 4 × √2 × √2 = 1 – 8 = –7

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 7

8. √3x2 – √2x + 3√3 = 0

Solution:

Given quadratic equation,

√3x2 – √2x + 3√3 = 0

On comparing it with ax2 + bx + c = 0, we have

a = √3, b = -√2, and c = 3√3

So, the discriminant of the given equation is

D = b2 – 4ac = (-√2)2 – 4 × √3 × 3√3 = 2 – 36 = –34

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 8

9. x2 + x + 1/√2 = 0

Solution:

Given quadratic equation,

x2 + x + 1/√2 = 0

It can be rewritten as,

√2x2 + √2x + 1 = 0

On comparing it with ax2 + bx + c = 0, we have

a = √2, b = √2, and c = 1

So, the discriminant of the given equation is

D = b2 – 4ac = (√2)2 – 4 × √2 × 1 = 2 – 4√2 = 2(1 – 2√2)

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 9

10. x2 + x/√2 + 1 = 0

Solution:

Given quadratic equation,

x2 + x/√2 + 1 = 0

It can be rewritten as,

√2x2 + x + √2 = 0

On comparing it with ax2 + bx + c = 0, we have

a = √2, b = 1, and c = √2

So, the discriminant of the given equation is

D = b2 – 4ac = (1)2 – 4 × √2 × √2 = 1 – 8 = -7

Hence, the required solutions are:

NCERT Solutions Class 11 Mathematics Chapter 5 ex.5.3 - 11


Miscellaneous Exercise Page No: 112

1.

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 1

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 2

2. For any two complex numbers z1 and z2, prove that

Re (z1z2) = Re zRe z2 – Im z1 Im z2

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 3

3. Reduce to the standard form

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 4

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 5

4.

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 6

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 7

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 8

5. Convert the following in the polar form:

(i) NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 9, (ii) NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 10

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 11

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 12

Solve each of the equation in Exercises 6 to 9.

6. 3x2 – 4x + 20/3 = 0

Solution:

Given quadratic equation, 3x2 – 4x + 20/3 = 0

It can be re-written as: 9x2 – 12x + 20 = 0

On comparing it with ax2 + bx + c = 0, we get

a = 9, b = –12, and c = 20

So, the discriminant of the given equation will be

D = b2 – 4ac = (–12)2 – 4 × 9 × 20 = 144 – 720 = –576

Hence, the required solutions are

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 13

7. x2 – 2x + 3/2 = 0

Solution:

Given quadratic equation, x2 – 2x + 3/2 = 0

It can be re-written as 2x2 – 4x + 3 = 0

On comparing it with ax2 + bx + c = 0, we get

a = 2, b = –4, and c = 3

So, the discriminant of the given equation will be

D = b2 – 4ac = (–4)2 – 4 × 2 × 3 = 16 – 24 = –8

Hence, the required solutions are

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 14

8. 27x2 – 10x + 1 = 0

Solution:

Given quadratic equation, 27x2 – 10x + 1 = 0

On comparing it with ax2 + bx + c = 0, we get

a = 27, b = –10, and c = 1

So, the discriminant of the given equation will be

D = b2 – 4ac = (–10)2 – 4 × 27 × 1 = 100 – 108 = –8

Hence, the required solutions are

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 15

9. 21x2 – 28x + 10 = 0

Solution:

Given quadratic equation, 21x2 – 28x + 10 = 0

On comparing it with ax2 + bx = 0, we have

a = 21, b = –28, and c = 10

So, the discriminant of the given equation will be

D = b2 – 4ac = (–28)2 – 4 × 21 × 10 = 784 – 840 = –56

Hence, the required solutions are

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 16

10. If z1 = 2 – i, z2 = 1 + i, find

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 17

Solution:

Given, z1 = 2 – i, z2 = 1 + i

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 18

11.

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 19

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 20

12. Let z1 = 2 – i, z2 = -2 + i. Find

(i) NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 22, (ii) NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 23

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 24

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 25

13. Find the modulus and argument of the complex number

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 26

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 27

14. Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of – 6 – 24i.

Solution:

Let’s assume z = (x – iy) (3 + 5i)

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 28

And,

(3x + 5y) – i(5x – 3y) = -6 -24i

On equating real and imaginary parts, we have

3x + 5y = -6 …… (i)

5x – 3y = 24 …… (ii)

Performing (i) x 3 + (ii) x 5, we get

(9x + 15y) + (25x – 15y) = -18 + 120

34x = 102

x = 102/34 = 3

Putting the value of x in equation (i), we get

3(3) + 5y = -6

5y = -6 – 9 = -15

y = -3

Therefore, the values of and y are 3 and –3 respectively.

15. Find the modulus of

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 29

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 30

16. If (x + iy)3 = u + iv, then show that

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 31

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 32

17. If α and β are different complex numbers with |β| = 1, then find

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 34

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 35

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 36

18. Find the number of non-zero integral solutions of the equation |1 – i|x = 2x

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 37

Therefore, 0 is the only integral solution of the given equation.

Hence, the number of non-zero integral solutions of the given equation is 0.

19. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that

(a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 38

20. If, then find the least positive integral value of m.

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 39

Solution:

NCERT Solutions Class 11 Mathematics Chapter 5 misc.ex - 40

Thus, the least positive integer is 1.

Therefore, the least positive integral value of m is 4 (= 4 × 1).

Rate Now post

You cannot copy content of this page