Exercise 15.1 Page: 360
Find the mean deviation about the mean for the data in Exercises 1 and 2.
1. 4, 7, 8, 9, 10, 12, 13, 17
Solution:-
First we have to find (x̅) of the given data
So, the respective values of the deviations from mean,
i.e., xi – x̅ are, 10 – 4 = 6, 10 – 7 = 3, 10 – 8 = 2, 10 – 10 = 0,
10 – 12 = – 2, 10 – 13 = – 3, 10 – 17 = – 7
6, 3, 2, 1, 0, -2, -3, -7
Now absolute values of the deviations,
6, 3, 2, 1, 0, 2, 3, 7
MD = sum of deviations/ number of observations
= 24/8
= 3
So, the mean deviation for the given data is 3.
2. 38, 70, 48, 40, 42, 55, 63, 46, 54, 44
Solution:-
First we have to find (x̅) of the given data
So, the respective values of the deviations from mean,
i.e., xi – x̅ are, 50 – 38 = -12, 50 -70 = -20, 50 – 48 = 2, 50 – 40 = 10, 50 – 42 = 8,
50 – 55 = – 5, 50 – 63 = – 13, 50 – 46 = 4, 50 – 54 = -4, 50 – 44 = 6
-12, 20, -2, -10, -8, 5, 13, -4, 4, -6
Now absolute values of the deviations,
12, 20, 2, 10, 8, 5, 13, 4, 4, 6
MD = sum of deviations/ number of observations
= 84/10
= 8.4
So, the mean deviation for the given data is 8.4.
Find the mean deviation about the median for the data in Exercises 3 and 4.
3. 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Solution:-
First we have to arrange the given observations into ascending order,
10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18.
The number of observations is 12
Then,
Median = ((12/2)th observation + ((12/2)+ 1)th observation)/2
(12/2)th observation = 6th = 13
(12/2)+ 1)th observation = 6 + 1
= 7th = 14
Median = (13 + 14)/2
= 27/2
= 13.5
So, the absolute values of the respective deviations from the median, i.e., |xi – M| are
3.5, 2.5, 2.5, 1.5, 0.5, 0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5
Mean Deviation,
= (1/12) × 28
= 2.33
So, the mean deviation about the median for the given data is 2.33.
4. 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Solution:-
First we have to arrange the given observations into ascending order,
36, 42, 45, 46, 46, 49, 51, 53, 60, 72.
The number of observations is 10
Then,
Median = ((10/2)th observation + ((10/2)+ 1)th observation)/2
(10/2)th observation = 5th = 46
(10/2)+ 1)th observation = 5 + 1
= 6th = 49
Median = (46 + 49)/2
= 95
= 47.5
So, the absolute values of the respective deviations from the median, i.e., |xi – M| are
11.5, 5.5, 2.5, 1.5, 1.5, 1.5, 3.5, 5.5, 12.5, 24.5
Mean Deviation,
= (1/10) × 70
= 7
So, the mean deviation about the median for the given data is 7.
Find the mean deviation about the mean for the data in Exercises 5 and 6.
5.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | |xi – x̅| | fi |xi – x̅| |
5 | 7 | 35 | 9 | 63 |
10 | 4 | 40 | 4 | 16 |
15 | 6 | 90 | 1 | 6 |
20 | 3 | 60 | 6 | 18 |
25 | 5 | 125 | 11 | 55 |
25 | 350 | 158 |
The sum of calculated data,
The absolute values of the deviations from the mean, i.e., |xi – x̅|, as shown in the table.
6.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | |xi – x̅| | fi |xi – x̅| |
10 | 4 | 40 | 40 | 160 |
30 | 24 | 720 | 20 | 480 |
50 | 28 | 1400 | 0 | 0 |
70 | 16 | 1120 | 20 | 320 |
90 | 8 | 720 | 40 | 320 |
80 | 4000 | 1280 |
Find the mean deviation about the median for the data in Exercises 7 and 8.
7.
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | c.f. | |xi – M| | fi |xi – M| |
5 | 8 | 8 | 2 | 16 |
7 | 6 | 14 | 0 | 0 |
9 | 2 | 16 | 2 | 4 |
10 | 2 | 18 | 3 | 6 |
12 | 2 | 20 | 5 | 10 |
15 | 6 | 26 | 8 | 48 |
Now, N = 26, which is even.
Median is the mean of the 13th and 14th observations. Both of these observations lie in the cumulative frequency 14, for which the corresponding observation is 7.
Then,
Median = (13th observation + 14th observation)/2
= (7 + 7)/2
= 14/2
= 7
So, the absolute values of the respective deviations from the median, i.e., |xi – M| are shown in the table.
8.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | c.f. | |xi – M| | fi |xi – M| |
15 | 3 | 3 | 13.5 | 40.5 |
21 | 5 | 8 | 7.5 | 37.5 |
27 | 6 | 14 | 1.5 | 9 |
30 | 7 | 21 | 1.5 | 10.5 |
35 | 8 | 29 | 6.5 | 52 |
Now, N = 30, which is even.
Median is the mean of the 15th and 16th observations. Both of these observations lie in the cumulative frequency 21, for which the corresponding observation is 30.
Then,
Median = (15th observation + 16th observation)/2
= (30 + 30)/2
= 60/2
= 30
So, the absolute values of the respective deviations from the median, i.e., |xi – M| are shown in the table.
Find the mean deviation about the mean for the data in Exercises 9 and 10.
9.
Income per day in ₹ | 0 – 100 | 100 – 200 | 200 – 300 | 300 – 400 | 400 – 500 | 500 – 600 | 600 – 700 | 700 – 800 |
Number of persons | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Income per day in ₹ | Number of persons fi | Mid – pointsxi | fixi | |xi – x̅| | fi|xi – x̅| |
0 – 100 | 4 | 50 | 200 | 308 | 1232 |
100 – 200 | 8 | 150 | 1200 | 208 | 1664 |
200 – 300 | 9 | 250 | 2250 | 108 | 972 |
300 – 400 | 10 | 350 | 3500 | 8 | 80 |
400 – 500 | 7 | 450 | 3150 | 92 | 644 |
500 – 600 | 5 | 550 | 2750 | 192 | 960 |
600 – 700 | 4 | 650 | 2600 | 292 | 1160 |
700 – 800 | 3 | 750 | 2250 | 392 | 1176 |
50 | 17900 | 7896 |
10.
Height in cms | 95 – 105 | 105 – 115 | 115 – 125 | 125 – 135 | 135 – 145 | 145 – 155 |
Number of boys | 9 | 13 | 26 | 30 | 12 | 10 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Height in cms | Number of boys fi | Mid – pointsxi | fixi | |xi – x̅| | fi|xi – x̅| |
95 – 105 | 9 | 100 | 900 | 25.3 | 227.7 |
105 – 115 | 13 | 110 | 1430 | 15.3 | 198.9 |
115 – 125 | 26 | 120 | 3120 | 5.3 | 137.8 |
125 – 135 | 30 | 130 | 3900 | 4.7 | 141 |
135 – 145 | 12 | 140 | 1680 | 14.7 | 176.4 |
145 – 155 | 10 | 150 | 1500 | 24.7 | 247 |
100 | 12530 | 1128.8 |
11. Find the mean deviation about median for the following data:
Marks | 0 -10 | 10 -20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of girls | 6 | 8 | 14 | 16 | 4 | 2 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Marks | Number of Girls fi | Cumulative frequency (c.f.) | Mid – pointsxi | |xi – Med| | fi|xi – Med| |
0 – 10 | 6 | 6 | 5 | 22.85 | 137.1 |
10 – 20 | 8 | 14 | 15 | 12.85 | 102.8 |
20 – 30 | 14 | 28 | 25 | 2.85 | 39.9 |
30 – 40 | 16 | 44 | 35 | 7.15 | 114.4 |
40 – 50 | 4 | 48 | 45 | 17.15 | 68.6 |
50 – 60 | 2 | 50 | 55 | 27.15 | 54.3 |
50 | 517.1 |
The class interval containing Nth/2 or 25th item is 20-30
So, 20-30 is the median class.
Then,
Median = l + (((N/2) – c)/f) × h
Where, l = 20, c = 14, f = 14, h = 10 and n = 50
Median = 20 + (((25 – 14))/14) × 10
= 20 + 7.85
= 27.85
12. Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age(in years) | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 | 51 – 55 |
Number | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
[Hint Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]
Solution:-
The given data is converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding the 0.5 to the upper limit of each class intervals and append other columns after calculations.
Age | Number fi | Cumulative frequency (c.f.) | Mid – pointsxi | |xi – Med| | fi|xi – Med| |
15.5 – 20.5 | 5 | 5 | 18 | 20 | 100 |
20.5 – 25.5 | 6 | 11 | 23 | 15 | 90 |
25.5 – 30.5 | 12 | 23 | 28 | 10 | 120 |
30.5 – 35.5 | 14 | 37 | 33 | 5 | 70 |
35.5 – 40.5 | 26 | 63 | 38 | 0 | 0 |
40.5 – 45.5 | 12 | 75 | 43 | 5 | 60 |
45.5 – 50.5 | 16 | 91 | 48 | 10 | 160 |
50.5 – 55.5 | 9 | 100 | 53 | 15 | 135 |
100 | 735 |
The class interval containing Nth/2 or 50th item is 35.5 – 40.5
So, 35.5 – 40.5 is the median class.
Then,
Median = l + (((N/2) – c)/f) × h
Where, l = 35.5, c = 37, f = 26, h = 5 and N = 100
Median = 35.5 + (((50 – 37))/26) × 5
= 35.5 + 2.5
= 38
Exercise 15.2 Page: 371
Find the mean and variance for each of the data in Exercise 1 to 5.
1. 6, 7, 10, 12, 13, 4, 8, 12
Solution:-
So, x̅ = (6 + 7 + 10 + 12 + 13 + 4 + 8 + 12)/8
= 72/8
= 9
Let us make the table of the given data and append other columns after calculations.
Xi | Deviations from mean(xi – x̅) | (xi – x̅)2 |
6 | 6 – 9 = -3 | 9 |
7 | 7 – 9 = -2 | 4 |
10 | 10 – 9 = 1 | 1 |
12 | 12 – 9 = 3 | 9 |
13 | 13 – 9 = 4 | 16 |
4 | 4 – 9 = – 5 | 25 |
8 | 8 – 9 = – 1 | 1 |
12 | 12 – 9 = 3 | 9 |
74 |
We know that Variance,
σ2 = (1/8) × 74
= 9.2
∴Mean = 9 and Variance = 9.25
2. First n natural numbers
Solution:-
We know that Mean = Sum of all observations/Number of observations
∴Mean, x̅ = ((n(n + 1))2)/n
= (n + 1)/2
and also WKT Variance,
By substitute that value of x̅ we get,
WKT, (a + b)(a – b) = a2 – b2
σ2 = (n2 – 1)/12
∴Mean = (n + 1)/2 and Variance = (n2 – 1)/12
3. First 10 multiples of 3
Solution:-
First we have to write the first 10 multiples of 3,
3, 6, 9, 12, 15, 18, 21, 24, 27, 30
So, x̅ = (3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30)/10
= 165/10
= 16.5
Let us make the table of the data and append other columns after calculations.
Xi | Deviations from mean(xi – x̅) | (xi – x̅)2 |
3 | 3 – 16.5 = -13.5 | 182.25 |
6 | 6 – 16.5 = -10.5 | 110.25 |
9 | 9 – 16.5 = -7.5 | 56.25 |
12 | 12 – 16.5 = -4.5 | 20.25 |
15 | 15 – 16.5 = -1.5 | 2.25 |
18 | 18 – 16.5 = 1.5 | 2.25 |
21 | 21 – 16.5 = – 4.5 | 20.25 |
24 | 24 – 16.5 = 7.5 | 56.25 |
27 | 27 – 16.5 = 10.5 | 110.25 |
30 | 30 – 16.5 = 13.5 | 182.25 |
742.5 |
Then, Variance
= (1/10) × 742.5
= 74.25
∴Mean = 16.5 and Variance = 74.25
4.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | Deviations from mean(xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
6 | 2 | 12 | 6 – 19 = 13 | 169 | 338 |
10 | 4 | 40 | 10 – 19 = -9 | 81 | 324 |
14 | 7 | 98 | 14 – 19 = -5 | 25 | 175 |
18 | 12 | 216 | 18 – 19 = -1 | 1 | 12 |
24 | 8 | 192 | 24 – 19 = 5 | 25 | 200 |
28 | 4 | 112 | 28 – 19 = 9 | 81 | 324 |
30 | 3 | 90 | 30 – 19 = 11 | 121 | 363 |
N = 40 | 760 | 1736 |
5.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | Deviations from mean(xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
92 | 3 | 276 | 92 – 100 = -8 | 64 | 192 |
93 | 2 | 186 | 93 – 100 = -7 | 49 | 98 |
97 | 3 | 291 | 97 – 100 = -3 | 9 | 27 |
98 | 2 | 196 | 98 – 100 = -2 | 4 | 8 |
102 | 6 | 612 | 102 – 100 = 2 | 4 | 24 |
104 | 3 | 312 | 104 – 100 = 4 | 16 | 48 |
109 | 3 | 327 | 109 – 100 = 9 | 81 | 243 |
N = 22 | 2200 | 640 |
6. Find the mean and standard deviation using short-cut method.
xi | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
fi | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
Solution:-
Let the assumed mean A = 64. Here h = 1
We obtain the following table from the given data.
Xi | Frequency fi | Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
60 | 2 | -4 | 16 | -8 | 32 |
61 | 1 | -3 | 9 | -3 | 9 |
62 | 12 | -2 | 4 | -24 | 48 |
63 | 29 | -1 | 1 | -29 | 29 |
64 | 25 | 0 | 0 | 0 | 0 |
65 | 12 | 1 | 1 | 12 | 12 |
66 | 10 | 2 | 4 | 20 | 40 |
67 | 4 | 3 | 9 | 12 | 36 |
68 | 5 | 4 | 16 | 20 | 80 |
0 | 286 |
Mean,
Where A = 64, h = 1
So, x̅ = 64 + ((0/100) × 1)
= 64 + 0
= 64
Then, variance,
σ2 = (12/1002) [100(286) – 02]
= (1/10000) [28600 – 0]
= 28600/10000
= 2.86
Hence, standard deviation = σ = √2.886
= 1.691
∴ Mean = 64 and Standard Deviation = 1.691
Find the mean and variance for the following frequency distributions in Exercises 7 and 8.
7.
Classes | 0 – 30 | 30 – 60 | 60 – 90 | 90 – 120 | 120 – 150 | 150 – 180 | 180 – 210 |
Frequencies | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Classes | Frequency fi | Mid – pointsxi | fixi | (xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
0 – 30 | 2 | 15 | 30 | -92 | 8464 | 16928 |
30 – 60 | 3 | 45 | 135 | -62 | 3844 | 11532 |
60 – 90 | 5 | 75 | 375 | -32 | 1024 | 5120 |
90 – 120 | 10 | 105 | 1050 | -2 | 4 | 40 |
120 – 150 | 3 | 135 | 405 | 28 | 784 | 2352 |
150 – 180 | 5 | 165 | 825 | 58 | 3364 | 16820 |
180 – 210 | 2 | 195 | 390 | 88 | 7744 | 15488 |
N = 30 | 3210 | 68280 |
8.
Classes | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 –50 |
Frequencies | 5 | 8 | 15 | 16 | 6 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Classes | Frequency fi | Mid – pointsxi | fixi | (xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
0 – 10 | 5 | 5 | 25 | -22 | 484 | 2420 |
10 – 20 | 8 | 15 | 120 | -12 | 144 | 1152 |
20 – 30 | 15 | 25 | 375 | -2 | 4 | 60 |
30 – 40 | 16 | 35 | 560 | 8 | 64 | 1024 |
40 –50 | 6 | 45 | 270 | 18 | 324 | 1944 |
N = 50 | 1350 | 6600 |
9. Find the mean, variance and standard deviation using short-cut method
Height in cms | 70 – 75 | 75 – 80 | 80 – 85 | 85 – 90 | 90 – 95 | 95 – 100 | 100 – 105 | 105 – 110 | 110 – 115 |
Frequencies | 3 | 4 | 7 | 7 | 15 | 9 | 6 | 6 | 3 |
Solution:-
Let the assumed mean, A = 92.5 and h = 5
Let us make the table of the given data and append other columns after calculations.
Height (class) | Number of childrenFrequency fi | MidpointXi | Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
70 – 75 | 2 | 72.5 | -4 | 16 | -12 | 48 |
75 – 80 | 1 | 77.5 | -3 | 9 | -12 | 36 |
80 – 85 | 12 | 82.5 | -2 | 4 | -14 | 28 |
85 – 90 | 29 | 87.5 | -1 | 1 | -7 | 7 |
90 – 95 | 25 | 92.5 | 0 | 0 | 0 | 0 |
95 – 100 | 12 | 97.5 | 1 | 1 | 9 | 9 |
100 – 105 | 10 | 102.5 | 2 | 4 | 12 | 24 |
105 – 110 | 4 | 107.5 | 3 | 9 | 18 | 54 |
110 – 115 | 5 | 112.5 | 4 | 16 | 12 | 48 |
N = 60 | 6 | 254 |
Mean,
Where, A = 92.5, h = 5
So, x̅ = 92.5 + ((6/60) × 5)
= 92.5 + ½
= 92.5 + 0.5
= 93
Then, Variance,
σ2 = (52/602) [60(254) – 62]
= (1/144) [15240 – 36]
= 15204/144
= 1267/12
= 105.583
Hence, standard deviation = σ = √105.583
= 10.275
∴ Mean = 93, variance = 105.583 and Standard Deviation = 10.275
10. The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 – 36 | 37 – 40 | 41 – 44 | 45 – 48 | 49 – 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint first make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, 40.5-44.5, 44.5 – 48.5, 48.5 – 52.5 and then proceed.]
Solution:-
Let the assumed mean, A = 42.5 and h = 4
Let us make the table of the given data and append other columns after calculations.
Height (class) | Number of children(Frequency fi) | MidpointXi | Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
32.5 – 36.5 | 15 | 34.5 | -2 | 4 | -30 | 60 |
36.5 – 40.5 | 17 | 38.5 | -1 | 1 | -17 | 17 |
40.5 – 44.5 | 21 | 42.5 | 0 | 0 | 0 | 0 |
44.5 – 48.5 | 22 | 46.5 | 1 | 1 | 22 | 22 |
48.5 – 52.5 | 25 | 50.5 | 2 | 4 | 50 | 100 |
N = 100 | 25 | 199 |
Mean,
Where, A = 42.5, h = 4
So, x̅ = 42.5 + (25/100) × 4
= 42.5 + 1
= 43.5
Then, Variance,
σ2 = (42/1002)[100(199) – 252]
= (1/625) [19900 – 625]
= 19275/625
= 771/25
= 30.84
Hence, standard deviation = σ = √30.84
= 5.553
∴ Mean = 43.5, variance = 30.84 and Standard Deviation = 5.553.
Exercise 15.3 Page: 375
1. From the data given below state which group is more variable, A or B?
Marks | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 | 70 – 80 |
Group A | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group B | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
Solution:-
For comparing the variability or dispersion of two series, we calculate the coefficient of variance for each series. The series having greater C.V. is said to be more variable than the other. The series having lesser C.V. is said to be more consistent than the other.
Co-efficient of variation (C.V.) = (σ/ x̅) × 100
Where, σ = standard deviation, x̅ = mean
For Group A
Marks | Group Afi | Mid-pointXi | Yi = (xi – A)/h | (Yi)2 | fiyi | fi(yi)2 |
10 – 20 | 9 | 15 | ((15 – 45)/10) = -3 | (-3)2= 9 | – 27 | 81 |
20 – 30 | 17 | 25 | ((25 – 45)/10) = -2 | (-2)2= 4 | – 34 | 68 |
30 – 40 | 32 | 35 | ((35 – 45)/10) = – 1 | (-1)2= 1 | – 32 | 32 |
40 – 50 | 33 | 45 | ((45 – 45)/10) = 0 | 02 | 0 | 0 |
50 – 60 | 40 | 55 | ((55 – 45)/10) = 1 | 12= 1 | 40 | 40 |
60 – 70 | 10 | 65 | ((65 – 45)/10) = 2 | 22= 4 | 20 | 40 |
70 – 80 | 9 | 75 | ((75 – 45)/10) = 3 | 32= 9 | 27 | 81 |
Total | 150 | -6 | 342 |
Where A = 45,
and yi = (xi – A)/h
Here h = class size = 20 – 10
h = 10
So, x̅ = 45 + ((-6/150) × 10)
= 45 – 0.4
= 44.6
σ2 = (102/1502) [150(342) – (-6)2]
= (100/22500) [51,300 – 36]
= (100/22500) × 51264
= 227.84
Hence, standard deviation = σ = √227.84
= 15.09
∴ C.V for group A = (σ/ x̅) × 100
= (15.09/44.6) × 100
= 33.83
Now, for group B.
Marks | Group Bfi | Mid-pointXi | Yi = (xi – A)/h | (Yi)2 | fiyi | fi(yi)2 |
10 – 20 | 10 | 15 | ((15 – 45)/10) = -3 | (-3)2= 9 | – 30 | 90 |
20 – 30 | 20 | 25 | ((25 – 45)/10) = -2 | (-2)2= 4 | – 40 | 80 |
30 – 40 | 30 | 35 | ((35 – 45)/10) = – 1 | (-1)2= 1 | – 30 | 30 |
40 – 50 | 25 | 45 | ((45 – 45)/10) = 0 | 02 | 0 | 0 |
50 – 60 | 43 | 55 | ((55 – 45)/10) = 1 | 12= 1 | 43 | 43 |
60 – 70 | 15 | 65 | ((65 – 45)/10) = 2 | 22= 4 | 30 | 160 |
70 – 80 | 7 | 75 | ((75 – 45)/10) = 3 | 32= 9 | 21 | 189 |
Total | 150 | -6 | 592 |
Where A = 45,
h = 10
So, x̅ = 45 + ((-6/150) × 10)
= 45 – 0.4
= 44.6
σ2 = (102/1502) [150(592) – (-6)2]
= (100/22500) [88,800 – 36]
= (100/22500) × 88,764
= 394.50
Hence, standard deviation = σ = √394.50
= 19.86
∴ C.V for group B = (σ/ x̅) × 100
= (19.86/44.6) × 100
= 44.53
By comparing C.V. of group A and group B.
C.V of Group B > C.V. of Group A
So, Group B is more variable.
2. From the prices of shares X and Y below, find out which is more stable in value:
X | 35 | 54 | 52 | 53 | 56 | 58 | 52 | 50 | 51 | 49 |
Y | 108 | 107 | 105 | 105 | 106 | 107 | 104 | 103 | 104 | 101 |
Solution:-
From the given data,
Let us make the table of the given data and append other columns after calculations.
X (xi) | Y (yi) | Xi2 | Yi2 |
35 | 108 | 1225 | 11664 |
54 | 107 | 2916 | 11449 |
52 | 105 | 2704 | 11025 |
53 | 105 | 2809 | 11025 |
56 | 106 | 8136 | 11236 |
58 | 107 | 3364 | 11449 |
52 | 104 | 2704 | 10816 |
50 | 103 | 2500 | 10609 |
51 | 104 | 2601 | 10816 |
49 | 101 | 2401 | 10201 |
Total = 510 | 1050 | 26360 | 110290 |
We have to calculate Mean for x,
Mean x̅ = ∑xi/n
Where, n = number of terms
= 510/10
= 51
Then, Variance for x =
= (1/102)[(10 × 26360) – 5102]
= (1/100) (263600 – 260100)
= 3500/100
= 35
WKT Standard deviation = √variance
= √35
= 5.91
So, co-efficient of variation = (σ/ x̅) × 100
= (5.91/51) × 100
= 11.58
Now, we have to calculate Mean for y,
Mean ȳ = ∑yi/n
Where, n = number of terms
= 1050/10
= 105
Then, Variance for y =
= (1/102)[(10 × 110290) – 10502]
= (1/100) (1102900 – 1102500)
= 400/100
= 4
WKT Standard deviation = √variance
= √4
= 2
So, co-efficient of variation = (σ/ x̅) × 100
= (2/105) × 100
= 1.904
By comparing C.V. of X and Y.
C.V of X > C.V. of Y
So, Y is more stable than X.
3. An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:
Firm A | Firm B | |
No. of wages earners | 586 | 648 |
Mean of monthly wages | Rs 5253 | Rs 5253 |
Variance of the distribution of wages | 100 | 121 |
(i) Which firm A or B pays larger amount as monthly wages?
(ii) Which firm, A or B, shows greater variability in individual wages?
Solution:-
From the given table,
Mean monthly wages of firm A = Rs 5253
and Number of wage earners = 586
Then,
Total amount paid = 586 × 5253
= Rs 3078258
Mean monthly wages of firm B = Rs 5253
Number of wage earners = 648
Then,
Total amount paid = 648 × 5253
= Rs 34,03,944
(i) So, firm B pays larger amount as monthly wages.
(ii) Variance of firm A = 100
We know that, standard deviation (σ)= √100
=10
Variance of firm B = 121
Then,
Standard deviation (σ)=√(121 )
=11
Hence the standard deviation is more in case of Firm B that means in firm B there is greater variability in individual wages.
4. The following is the record of goals scored by team A in a football session:
No. of goals scored | 0 | 1 | 2 | 3 | 4 |
No. of matches | 1 | 9 | 7 | 5 | 3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
Solution:-
From the given data,
Let us make the table of the given data and append other columns after calculations.
Number of goals scored xi | Number of matches fi | fixi | Xi2 | fixi2 |
0 | 1 | 0 | 0 | 0 |
1 | 9 | 9 | 1 | 9 |
2 | 7 | 14 | 4 | 28 |
3 | 5 | 15 | 9 | 45 |
4 | 3 | 12 | 16 | 48 |
Total | 25 | 50 | 130 |
Since C.V. of firm B is greater
∴ Team A is more consistent.
5. The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
Which is more varying, the length or weight?
Solution:-
First we have to calculate Mean for Length x,
Miscellaneous Exercise Page: 380
1. The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
Solution:-
2. The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12, 14. Find the remaining two observations.
Solution:-
Hence, from equation (i) and (v) we have:
When x – y = 2 then x = 8 and y = 6
And, when x – y = – 2 then x = 6 and y = 8
∴ the remaining observations are 6 and 8
3. The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
Solution:-
We know that,
4. Given that x̅ is the mean and σ2 is the variance of n observations x1, x2, …,xn . Prove that the mean and variance of the observations ax1, ax2, ax3, …., axn are ax̅ and a2σ2, respectively, (a ≠ 0).
Solution:-
From the question it is given that, n observations are x1, x2,…..xn
Mean of the n observation = x̅
Variance of the n observation = σ2
As we know that,
5. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases: (i) If wrong item is omitted. (ii) If it is replaced by 12
Solution:-
(i) If wrong item is omitted,
From the question it is given that,
The number of observations i.e. n = 20
The incorrect mean = 20
The incorrect standard deviation = 2
(ii) If it is replaced by 12,
From the question it is given that,
The number of incorrect sum observations i.e. n = 200
The correct sum of observations n = 200 – 8 + 12
n = 204
Then, correct mean = correct sum/20
= 204/20
= 10.2
6. The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean | 42 | 32 | 40.9 |
Standard deviation | 12 | 15 | 20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
Solution:-
From the question it is given that,
Mean of Mathematics = 42
Standard deviation of Mathematics = 12
Mean of Physics = 32
Standard deviation of physics = 15
Mean of Chemistry = 40.9
Standard deviation of chemistry = 20
As we know that,
7. The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Solution:-
From the question it is given that,
The total number of observations (n) = 100
Incorrect mean, (x̅) = 20
And, Incorrect standard deviation (σ) = 3